

First Semester B.E. Degree Examination, Dec.2018/Jan. 2019
Engineering Mathematics - I

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find y_{n} if $y=\frac{1}{x^{2}-5 x+6}$.
(06 Marks)
b. Find the angle between the curves $r=a(1+\operatorname{Cos} \theta) r^{2}=a^{2} \operatorname{Cos} 2 \theta$
(05 Marks)
c. Find the radius of curvature for the curve $y^{2}=\frac{4 a^{2}(2 a-x)}{x}$ where the curve meets x-axis.
(05 Marks)
$\begin{array}{lll}\text { OR } & \text { OR } \\ \text { a. If } x=\text { Sint } y=\text { Cosmt prove that }\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0 & \text { (06 Marks) } \\ \text { b. Find the Pedal equation of the curve } r^{m}=a^{m}(\cos m \theta+\operatorname{Sinm} \theta) & \text { (05 Marks) } \\ \text { c. Show that for the curve } r(1-\operatorname{Cos} \theta)=2 a \rho^{2} \text { varies as } r^{3} . & \text { (05 Marks) }\end{array}$

Module-2

3 a. Obtain the Taylor's expansion of $\tan ^{-1} x$ in powers of $x-1$ up to the term containing fourth degree.
(06 Marks)
b. Evaluate $\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\operatorname{Cot}^{2} x\right)$.
(05 Marks)
c. If $z=x^{2} \tan ^{-1}\left(\frac{y}{x}\right)-y^{2} \tan ^{-1}\left(\frac{x}{y}\right)$ show that $\frac{\partial^{2} z}{\partial x \partial y}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$.
(05 Marks)

OR

4 a. Using Maclaurin's series proye that $\sqrt{1+\operatorname{Sin} 2 x}=1+x-\frac{x^{2}}{2}+\frac{x^{4}}{24} \ldots \ldots$.
(06 Marks)
b. If $u=f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.
(05 Marks)
c. If $u=\sqrt{x_{1} x_{2}} v=\sqrt{x_{2} x_{3}} w=\sqrt{x_{3} x_{1}}$ find $J\left(\frac{u, v, w}{x_{1} x_{2} x_{3}}\right)$.
(05 Marks)

Module-3

5 a. A particle moves along a curve whose parametric equations are $x=e^{-t}, y=2 \operatorname{Cos} 3 t$, $z=2 \operatorname{Sin} 3 t$ where t is the time. Find the velocity and acceleration at any time t and also their magnitudes at $\mathrm{t}=0$.
(05 Marks)
b. Find div $\overrightarrow{\mathrm{F}}$ and $\operatorname{curl} \overrightarrow{\mathrm{F}}$ where $\overrightarrow{\mathrm{F}}=\nabla\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right)$
(05 Marks)
c. Show that $\vec{F}=(y+z) i+(z+x) j+(x+y) k$ is irrotational. Also find a scalar potential such that $\overrightarrow{\mathrm{F}}=\nabla \phi$.
(06 Marks)

OR

6 a. If $\vec{F}=\left(3 x^{2} y-z\right) i+\left(x z^{3}+y^{4}\right) j-2 x^{3} z^{2} k$ find $\operatorname{grad}(\operatorname{div} \vec{F})$ at $(2,-1,0)$
(06 Marks)
b. Show that $\vec{F}=\frac{x i+y j}{x^{2}+y^{2}}$ is both solenoidal and irrotational.
(05 Marks)
c. Prove curl $(\operatorname{grad} \phi)=0$ for any scalar function ϕ.
(05 Marks)

Module-4

7 a. Obtain reduction formula for $\int_{0}^{\pi / 2} \operatorname{Sin}^{n} x d x$ where n is a positive integer.
(06 Marks)
b. Evaluate $\int_{0}^{\pi / 6} \cos ^{4} 3 x \operatorname{Sin}^{2} 6 x d x$ using reduction formula.
(05 Marks)
c. Solve $\frac{d y}{d x}+\frac{y \cos x+\sin y+y}{\sin x+x \cos y+x}=0$.
(05 Marks)

OR

8 a. Obtain reduction formula for $\int_{0}^{\pi / 2} \cos ^{n} x d x$ where n is a positive integer.
(06 Marks)
b. Obtain the orthogonal trajectory of the family of curves $\mathrm{r}=\mathrm{a}(1+\operatorname{Sin} \theta)$
(05 Marks)
c. If the temperature of the air is $30^{\circ} \mathrm{C}$ and metal ball cools from $100^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in 15 minutes, find how long will it take for the metal ball to reach temperature of $40^{\circ} \mathrm{C}$.
(05 Marks)

Module-5

9 a. Find the rank of the matrix $\mathrm{A}=\left[\begin{array}{cccc}2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1\end{array}\right]$.
(06 Marks)
b. Solve by Gauss Jordan method $2 x+5 y+7 z=52,2 x+y-z=0, x+y+z=9$.
(05 Marks)
c. Find the largest eigen value and the corresponding eigen vector by power method given that $A=\left[\begin{array}{ccc}4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5\end{array}\right]$ by taking the initial approximation to the eigen vector as $\left[\begin{array}{ll}1 & 0.8,-0.8\end{array}\right]^{1}$.
(05 Marks)

OR

10 a. Use Gauss seidel method to solve the equations
$x+y+54 z=110,27 x+6 y-z=85,6 x+15 y+2 z=72$.
(06 Marks)
b. Reduce the matrix to diagonal form $A=\left[\begin{array}{ll}-1 & 3 \\ -2 & 4\end{array}\right]$ and hence find A^{4}.
(05 Marks)
c. Reduce the quadratic form $8 x^{2}+7 y^{2}+3 z^{2}-12 x y+4 x z-8 y z$ into canonical form.
(05 Marks)

First/Second Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Engineering Chemistry

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-

1 a. Derive Nernst equation for single electrode potential.
(05 Marks)
b. Define electrolyte concentration cell. The e.m.f of cell $\mathrm{Ag}\left|\mathrm{AgNO}_{3}(0.001 \mathrm{M}) \| \mathrm{Ag} \mathrm{NO} \mathrm{NO}_{3}(\mathrm{XM})\right|$ Ag is 0.0591 V at $25^{\circ} \mathrm{C}$. Find the value of X .
(05 Marks)
c. Explain the following battery characteristics:
i) Cell potential
ii) Capacity
iii) Cycle life.
(06 Marks)

OR

2 a. Define reference electrode. Discuss the construction and working of Ag - Agcl electrode.
(05 Marks)
b. Describe the construction and working of Lithium - ion battery. Mention its application.
(05 Marks)
c. Describe construction, working and application of methanol O_{2} fuel cell using $\mathrm{H}_{2} \mathrm{SO}_{4}$ as electrolyte.
(06 Marks)

Module-2

3 a. Explain electrochemical theory of corrosion taking Iron as an example.
(05 Marks)
b. Explain the following factors affecting corrosion
(i) Nature of corrosion product
(ii) Ratio of Anodic to cathodic Area
(iii) p^{H} of the medium.
(05 Marks)
c. Describe electroplating of chromium (decorative and Hard). Mention the reasons for not using chromium Anode in electroplating of chromium.
(06 Marks)

OR

4 a. Explain waterline and pitting corrosion.
(06 Marks)
b. What is metal finishing? Mention technological importance of metal finishing.
(05 Marks)
c. Describe electro-less plating of copper with plating reactions.
(05 Marks)

Module-3

5 a. Define Cracking. Explain fluidized bed catalytic cracking method with a neat diagram.
b. What is Reforming of petroleum? Give any three reactions involved in reforming. (05 Marks)
c. What is photovoltaic cell? Explain the construction and working of photovoltaic cell. Mention any two advantages.
(06 Marks)

OR

6 a. Calculate the Gross or Net calorific value of a coal sample from the following data obtained from Bomb calorimetric experiment.
(05 Marks)
i) Weight of coal $=0.65 \times 10^{-3} \mathrm{~kg}$
ii) Weight water in colorimeter $=1200 \mathrm{~g}$
iii) Water equivalent of calorimeter $=400 \mathrm{~g}$
iv) Latent heat of steam $=587 \times 4.2 \mathrm{~kJ} / \mathrm{kg}$
v) Rise in temperature $\quad=1.8^{\circ} \mathrm{C}$
vi) Sp-heat of water $\quad=4.187 \mathrm{~kJ} / \mathrm{kg} \%$ of $\mathrm{H}=5$
b. Explain the modules, panels and arrays of the design of PV cell.
(06 Marks)
c. Explain the purification of silicon by zone refining process.
(05 Marks)

Module-4

7 a. Explain free radical mechanism for addition polymerization taking vinyl chloride as an example.
(06 Marks)
b. Describe the synthesis and applications of the following polymer.
i) Plexiglass (PMMA)
ii) Polyurethane
(06 Marks)
c. What is glass transition temperature? Discuss how flexibility of polymer chain affects glass transition temperature.
(04 Marks)

8 a. Calculate number average and weight average of a polymer in which 200 molecules of $1000 \mathrm{~g} / \mathrm{mole}, 300$ molecules of $2000 \mathrm{~g} / \mathrm{mole}$ and 500 molecules of $3000 \mathrm{~g} / \mathrm{mole}$ are present respectively.
(06 Marks)
b. Explain the synthesis, properties and application of silicon rubber.
(05 Marks)
c. What is polymer composite? Describe the synthesis an application of Kevlar fibre.(05 Marks)

Module-5

9 a. Explain Scale and Sludge formation in the boiler.
b. Explain determination of $\mathrm{DO}\left(\right.$ Dissolved $\left.\mathrm{O}_{2}\right)$ by Winkler's method.
c. Write a note on fullerene.

OR

10 a. Explain desalination of sea water by ion selective electrodialysis method.
(05 Marks)
b. Explain the synthesis of nanomaterial by chemical vapour condensation method. Mention advantages of this method.
c. Write shoft notes on Carbon nanotubes and Dendrimers.
\square
First/Second Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Engineering Physics

Time: 3 hrs.

Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing one full question from each module.

> 2. Physical constants : Plank's constant, $h=6.63 \times 10^{-34} \mathrm{JS} ;$ Mass of electron, $$
\begin{array}{l}m=9.11 \times 10^{-31} \mathrm{~kg} ; \text { Boltzmann constant, } k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{k} ;\end{array}
$$ Avogadro number, $N_{A}=6.02 \times 10^{26} / \mathrm{Kmole} ;$ Velocity of light, $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s} ;$ Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$.

Module-1

1 a. What are postulates of Plank's quantum theory of black body radiations? Deduce Rayleigh and Jean's law from Planks's law.
b. Define phase velocity and group velocity. Obtain the relation between group velocity and phase velocity.
(06 Marks)
c. An electron has a speed of $800 \mathrm{~m} / \mathrm{s}$ with an accuracy of 0.004%. Calculate the certainty with which one can locate the position of the electron.
(04 Marks)

OR

2 a. State Heisenberg's uncertainty principle and express three forms of uncertainty relations.
(04 Marks)
b. Explain probability density. Set up one dimensional time independent Schrodinger wave equation.
(08 Marks)
c. An electron is confined to move between two rigid walls separated by 1 nm . Find the de-Broglie wavelength of the electron corresponding to first excited energy state. (04 Marks)

Module-2

3 a. Define Fermi-Dirac distribution function and explain the effect of temperature and energy on Fermi factor.
(06 Marks)
b. Discuss the merits of quantum free electron theory. (06 Marks)
c. A metallic wire has a resistivity of $1.42 \times 10^{-8} \Omega \mathrm{~m}$ for an electric field of $0.14 \mathrm{Vm}^{-1}$. Find:
i) Mean collision time
ii) Average draft velocity, assuming that there are 6×10^{28} electrons $/ \mathrm{m}^{3}$.
(04 Marks)

OR

4 a. Explain in brief expressions for electron and hole concentrations in conduction band and valence band of intrinsic semi conductor.
(06 Marks)
b. What is Meissner effect? Explain two types of super conductors.
(06 Marks)
c. Calculate the Fermi energy of sodium at 0 K assuming that it has one free electron per atom and a density of sodium is $970 \mathrm{~kg} / \mathrm{m}^{3}$ and atomic weight 23 .
(04 Marks)

Module-3

5 a. Explain the welding mechanism and measurements of atmospheric pollutants using laser.
(05 Marks)
b. Describe the construction and working of carbon dioxide laser with energy level diagram.
(08 Marks)
c. Optical power of 1 mw is launched into an optical fibre of length 100 m . If the power emerging from the other end is 0.3 mw . Calculate the fibre attenuation.
(03 Marks)

OR
6 a. Discuss the different types of optical fibres with sketches.
(06 Marks)
b. What is holography? Explain the recording and reconstruction processes in holography with neat diagram.
(06 Marks)
c. The output wavelength of CO_{2} laser is $10.6 \mu \mathrm{~m}$, If it produces an output of 1 kw , how many photons are emitted in one minute?
(04 Marks)

Module-4

7 a. Define atomic packing factor. Explain seven crystal systems.
b. What are Miller Indices? Explain the procedure to find Miller Indices with example.
(04 Marks)
c. Calculate the wavelength of monochromatic beam of x-ray is incident on the plane (121) of NaCl , with a glancing angle 23.8°, results in second order diffraction maxima with a lattice constant 3.21 A .
(04 Marks)

OR

8 a. Define the terms:
i) Unit cell
ii) Space lattice
iii) Co-ordination number
iv) Basis
v) Crystal structure
(05 Marks)
b. Define polymorphism and allotropy. Describe Bragg's spectrometer. Explain the determination of crystal structure.
(08 Marks)
c. Molybdenum has a BCC structure. Its Lattice parameter is $3.15 \AA$. Determine the radius of molybdenum atom.
(03 Marks)

Module-5

9 a. Explain the construction and working of scanning electron microscope with neat diagram.
(06 Marks)
b. Define Mach number. Explain the distinction between subsonic and supersonic waves with suitable example.
(05 Marks)
c. Describe construction and working of Reddy's shock tube.

OR

10 a. Explain density of states for any three quantum structures with graphical representation.
b. Describe sol-gel method for producing nano materials.
c. Explain the synthesis of carbon nanotubes using arc-discharge method.

USN \square
First/Second Semester B.E. Degree Examination, Dec.2018/Jan. 2019
Programming in C and Data Structures
Time: 3 hrs
Max. Marks: 80

Note: Answer any FIVE full questions, choosing
 ONE full question from each module.

Module-1

1 a. What is an operator? Explain the arithmetic, logical, and bitwise operators in C language.
(08 Marks)
b. Write a C program which takes as input p,t,r. Compute the simple interest and display the result.
(08 Marks)

OR

2 a. What is the purpose of pirntf() statement? Explain the formatted printf() along with examples.
(08 Marks)
b. What is type conversion? Illustrate different ways of type conversion with an example.
(08 Marks)

Module-2

3 a. Write a C program to calculate area of circle, rectangle and triangle using SWITCH case.
(08 Marks)
b. What is two way selection statements? Explain nested if statement and cascaded IF-ELSE with examples.
(08 Marks)

OR

4 a. Write a C program to find GCD of two non-zero integer numbers. If the first number is less than the second number, then the program must exchange the two numbers before computing GCD
(08 Marks)
b. Illustrate with an example break and continue statements.
(03 Marks)
c. Compare while loop and do-while loop with syntax, flowchart and examples.
(05 Marks)

Module-3

5 a. Define an array. Explain declaration and initialization of one dimensional array with an example.
(08 Marks)
b. Write a C program to accept an alphanumeric (Eg: "ABC123DEFR") string, to count the number of characters and digits. Also display the result.
(08 Marks)

OR

6 a. Explain any four string manipulation functions with examples.
(08 Marks)
b. Write a C program to check a number is a prime number or not.
(04 Marks)
c. What is function? Write a C program to find square of a number using function.
(04 Marks)

Module-4

7 a. Write a C program to create a structure using typedef and input the following details of " N " students (USN : String Name: String Average : float grade : char). Print the names of students with their average is $>=60 \%$.
(10 Marks)
b. Differentiate between structure and union with examples.

OR

8 a. Explain how the structure variable passed as a parameter to a function with example.
(06 Marks)
b. Explain the following file operations along with syntax and examples
i) fopen()
ii) fclose()
iii) fscan()
iv) fprintf()
v) fgets().
(10 Marks)

Module-5

9 a. List out various memory allocation and de-allocation mechanisms available in C? Write a C program to demonstrate them.
b. Discuss any two preprocessor directives in ' C '.
(08 Marks)
c. Define pointer. What are the operators used by pointer with an example. List the advantages and disadvantages of pointer.
(05 Marks)

OR

10 a. Describe the two ways of passing parameters to function with examples.
b. Define stack. Explain the primitive operations on the stack. Write a C program to demonstrate it.

First/Second Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Elements of Civil Engineering and Engineering Mechanics

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain role of civil engineer in the infrastructural development.
(06 Marks)
b. Define force and its characteristics.
(03 Marks)
c. Determine the angle θ for the force $\mathrm{F}=200 \mathrm{~N}$ shown in $\mathrm{Fig} \mathrm{Q1}(\mathrm{c})$ so that it produces i) maximum moment about A ii) the minimum moment about A . Determine the maximum and minimum moment.
(07 Marks)

2 a. Explain different types of roads.
(04 Marks)
b. Explain with neat sketch law of physical independence, Law of super position and law of transmissibility of force.
(06 Marks)
c. The moment of a certain force F is $180 \mathrm{kN}-\mathrm{m}$ clockwise about 0 and $90 \mathrm{kN}-\mathrm{m}$ counter clockwise about B. If its moment about A is zero, determine the force F for Fig Q2(c).

Fig Q2(c)
(06 Marks)

Module-2

3 a. Stat and prove parallelogram law of forces.
(05 Marks)
b. Forces are transmitted by two members as shown in Fig Q3(b). If the resultant of these forces is 1400 N directed upward vertically, find angle α and β.

Fig Q3(b)
(06 Marks)
c. Compute the resultant of the force system as in Fig Q3(c).

Fig Q3(c)

4 a. State prove Lami's theorem.
b. Determine the tension in the string and the reaction at contact surface for the cylinder of weight 1000 N placed as shown in Fig 4(b).

Fig Q4 (b)
c. What should be the value of θ in Fig Q4(c) which will make the motion of 900 N block down the plane to impend? The coefficient of friction for all contact surfaces is 0.33 .

Fig Q4(c)
(06 Marks)

Module-3

5 a. State and prove Varignon's principle of moments.
b. Determine the resultant of the force system acting on the plate as shown in Fig Q5(b) with respect to AB and AD .
(10 Marks)

Fig Q5(b)
2 of 4

OR

6 a. Explain with neat sketch different types of beams and loadings.
b. Determine the reactions at A and B for the loaded beam shown in Fig Q6(b).

Fig Q6(b)

Module-4

7 a. State and prove parallel axes theorem.
(06 Marks)
b. Determine the position of the centriod for the shaded area with respect to the axes shown in Fig Q7(b).

Fig Q7(b)
(10 Marks)

OR

8 a. From first principle derive the relation for centroid of a triangle with base b and height h.
b. Determine the moment of inertia of a prestressed concrete beam section shown in Fig Q8(b) about horizontal and vertical axis passing through centriod.

Fig Q8(b)
(10 Marks)

Module-5

9 a. Explain Displacement, Distance travelled, velocity and acceleration in rectilinear kinematic.
b. A sprinter in a 100 m race accelerates uniformly for the first 40 m and then runs with constant velocity. If the sprinter's time for the first 40 m is 5.2 seconds, determine his time for race.
(04 Marks)
c. A ball is projected vertically upwards with a velocity of $20 \mathrm{~m} / \mathrm{sec}$. Two seconds later, a second ball is projected vertically upwards with a velocity of $16 \mathrm{~m} / \mathrm{sec}$. Find the height above the surface at which the two ball meet.
(04 Marks)

OR
10 a. A cricket ball thrown from a height of 1.8 m above ground level at an angle of 30° with the horizontal with a velocity of $12 \mathrm{~m} / \mathrm{sec}$ is caught by a fielder at a height of 0.6 m above the ground as shown in Fig Q10(a). Determine the distance between the two players.

Fig Q10(a)
b. The motion of a particle starting from rest is defined by $a=10 t-t^{2}$ where a is in $m / \sec ^{2}$ and t is in seconds. Find the displacement before it starts in reverse direction of motion and velocity when acceleration changes its direction.
(08 Marks)

15ELE15/25

First/Second Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Basic Electrical Engineering

Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIKE full questions, choosing
 ONE full question from each module.

Module-1

1 a. Deduce an expression for stored energy in a magnetic field.
(04 Marks)
b. Find current in the battery, the current in each branch and pd cross $A B$ in the network shown in Fig.Q1(b).
(06 Marks)

c. A coil of 1000 turns is wound on a silicon steel ring of relative permeability 1200. The ring has mean diameter of 10 cm and cross-sectional area of $12 \mathrm{sq} . \mathrm{cm}$. When a current of 4 amperes flows through the coil. Find :
i) Flux in the core
ii) Inductance of the coil
iii) The e.m.f included in the coil if the flux falls to zero in 15 milli seconds
iv) Now if another similar coil is placed such that 70% magnetic coupling exists between the coils. Find the mutual inductanae.
(06 Marks)

OR

2 a. State Fleming's right hand rule. Mention its applicatisn.
(04 Marks)
b. A resistance of 10Ω is conneoted in series with the two resistances each of 15Ω arranged in parallel. What resistance must be shunted across this parallel combination so that the total curnent taken will be 1.5 A from 20 V supply applied?
(06 Marks)
c. Coils A and B in magnetic circuit have 600 and 500 turns respectively. A current of 8 A in coil A produces a flux of 0.04 Wb . If coefficient of coupling is 0.2 , Calculate :
i) Self inductance of coil A with B open circuited
ii) Flux linking with coil B
iii) The avenage e.m.f induced in coil B when the flux with it changes from zero to full value in 0.02 second
iv) Mutual inductance.
(06 Marks)

Module-2

3 a. With a neat sketch explain the construction of a DC machine.
(06 Marks)
b. State the application of DC shunt motor and DC series motor.
(04 Marks)
c. A 4 pole. 220 V , Lap connected, DC shunt motor has 36 slots. Each slot containing 16 conductors. It draws a current of 40A form the supply. The field resistance and armature resistance ane $110 \Omega, 0.1 \Omega$ respectively. The motor develops an output power of 6 KW . The flux for pole is 40 MWb . Calculate :
i) The speed
ii) The torque developed by the armature
iii) The shaft torque.
(06 Marks)

OR

4 a. Explain different characteristics of a DC series motor.
(05 Marks)
b. With the help of neat diagram, explain the construction and principle of operation of single phase energy meter.
(06 Marks)
c. An 8 pole, Lap-connected armature has 40 slots with 12 conductors per slot, generates a voltage of 500 V . Determine the speed at which it is running if the flux per pole is 50 MWb .
(05 Marks)

Module-3

5 a. With a neat circuit diagram and a switchirg table, explain three way control of lamp.
b. Derive an expression for RMS value of an alternating quantity.
(04 Marks)
c. Two impedances of $Z_{1}=10+j 15 \Omega$ and $Z_{2}=6-j 8 \Omega$ are connected in parallel. If the supply current is 20 A . What is the power dissipated in each brancII?
(06 Marks)

OR

6 a. Show that the average power consumed by pure inductor is zero.
(05 Marks)
b. Explain the plate earthing along with a neat diagram.
(06 Marks)
c. An alternating current of frequency of 60 Hz has a maximum value of 12 A
i) Write down the equations for its instantanecus value
ii) Find the value of current after $\frac{1}{360}$ seconds
iii) Find the time taken to reach 9.6 Armps for the first time.
(06 Marks)

Module-4

7 a. Obtain the relationship between line and phase values of current in a three phase balanced delta connected system.
(05 Marks)
b. Discuss the different types of rotor used in alternator
c. A 3 phase star connected system has 4Ω resistance in series with an inductance of 10 mH per phase is applied voltage is 415 V with frequency of 50 Hz . Find the power drawn by the circuit.
(04 Marks
CR
8 a. Derive e.m.f equation of an alternator.
(05 Marks)
b. Three coils each of impedance 2060° are connected in star to a 3 phase, $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find the reading on œach of the two wattmeters connected to measure the power input.
(05 Marks)
c. A 3-phase, 6-pole, star cannected alternator nevelves at 1000 rpm . The stator has 90 slots and $\&$ conductors per slot. The flux per pale is 0.05 Wb . Calculate voltage generated if $\mathrm{k}_{\mathrm{d}}=0.96$.
(06 Marks)

Module-5

9 a. Explain the pninciple of operation of a 3-phase induction motor.
(05 Marks)
b. With a neat sketch explain the oonstructional details of core and shell type transformer.
(06 Marks)
c. A $100 \mathrm{~K} M \mathrm{~A}, 6000 / 400 \mathrm{~V}, 50 \mathrm{~Hz}$, single phase transformer has 100 turns in the secondary. Find : i) Full load primary current and secondary current ii) number of turns in the primary coil iii) maximum flux in the core.
(05 Marks

OR

10 a. A 6 pole induction motor is supplied by a 10 pole alternator which is driven at 600 rpm . If the motor is running at 970 rpm , determine the percentage slip.
(05 Marks)
b. Derive the expression for frequency of rotor currents.
(04 Marks)
c. A 600 KVA transformer has an efficiency of 92% at full load, unity pf. and at half load, 0.9 pf . Determine its efficiency at 75% of full load and 0.9 pf .
(07 Marks)

USN \square

First/Second Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Basic Electronics

Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Draw and explain the V-I characteristics of a Silicon diode.
(05 Marks)
b. Find the value of the series resistance ' R_{S} ' required to drive a forward current of 1.25 mA through a germanium diode from a 4.5 V barrtery. Write the circuit diagram showing all the values.
(04 Marks)
c. With circuit diagram, explain the operation of center-tapped full wave rectifier. Draw input and output waveforms.
(07 Marks)

2 a. Design the Zener regulator for the following specifications. Output voltage $=5 \mathrm{~V}$, load current $=20 \mathrm{~mA}$, Zener voltage $\mathrm{P}_{\mathrm{Z}(\mathrm{min})}=500 \mathrm{~mW}$ and input voltage $=12 \mathrm{~V} \pm 3 \mathrm{~V} . \quad(05$ Marks)
b. Draw CE circuit and sketch the input and output characteristics also explain the operating regions by indicating them on the characteristics curve.
(08 Marks)
c. Calculate the values of I_{C} and I_{E} for a BJT with $\alpha=0.97$ and $\mathrm{I}_{\mathrm{B}}=50 \mu \mathrm{~A}$. Also determine the value of β_{dc}.
(03 Marks)

Module-2

3 a. Determine the operating point for a Silicon transistor biased by base bias method, for $\beta=100, \mathrm{R}_{\mathrm{C}}=2.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{B}}=500 \mathrm{k} \Omega$ and $\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}$. Also draw the DC load line. (06 Marks)
b. With a net circuit diagram. Explain the voltage divider bias circuit.
c. Compare base bias and voltage divider bias circuits.
(03 Marks)

OR

4 a. List the characteristics of an ideal op-amp.
b. A non-inverting amplifier has input resistance of $10 \mathrm{k} \Omega$ and feedback resistance of $60 \mathrm{k} \Omega$? With a load resistance of $47 \mathrm{k} \Omega$. Draw the circuit and calculate the output voltage, voltage gain, load current, when the input voltage is 1.5 V .
c. Derive the expression for 3 -input summing amplifier.

Module-3

5 a. Compare analog and digital signal.
(04 Marks)
b. Convert :
i) $(1 \mathrm{AD} \cdot \mathrm{EO})_{16}=(?)_{10}=(?)_{8}$
ii) $(1101101)_{2}=(?)_{10}$
iii) $(69)_{10}=(?)_{2}$
(05 Marks)
c. Perform the subtraction :
i) $(10010)_{2}$ and (1101) using 1 's complement method
ii) $(10010)_{2}$ and $(01101)_{2}$ using 2 's complement method.
(07 Marks)

OR

6 a. State and prove DC - Morgan's theorems for 4 variables.
(08 Marks)
b. Simplify the following expression and realize using basic gates :
$Y=A(\overline{\mathrm{ABC}}+\mathrm{A} \overline{\mathrm{B} C})$.
(04 Marks)
c. Realize half adder using only NAND gate.

Module-4

7 a. Define flip-flop. Give the difference between a later and flip-flop.
(04 Marks)
b. Explain the working of a NOR gate later.
(06 Marks)
c. With diagram and truth table explain clocked RS -flip-flop.
(06 Marks)

OR

8 a. List the important features of 8051 microcontroller.
(03 Marks)
b. Explain the architecture of 8051 microcontroller.
c. With block diagram, explain the micro-controller based stepper motor control system.
(06 Marks)

Module-5

9 a. With a neat block diagram, explain the elements of communication system.
(06 Marks)
b. A carrier of 1 MHz , with 400 W of its power is amplitude modulated with a sinusoidal signal of 2500 Hz . The depth of modulation is 75%. Calculate the sideband frequencies, the band width, the power in the side bands and the total power in the modulated wave.
c. Give the comparison between AM and FM.

OR

10 a. What is a Transducer? Distinguish between active and passive transducer.
(05 Marks)
b. A termistor has a material constant ' β ' of $2000 /{ }^{\circ} \mathrm{K}$. If its resistance is $100 \mathrm{k} \Omega$ at $300^{\circ} \mathrm{k}$ temperature, what will be the resistance at $500^{\circ} \mathrm{k}$?
(04 Marks)
c. Explain the construction and the principle of operation of LVDT. Also list the advantages of LVDT. .
(07 Marks)

Second Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Engineering Mathematics - II

Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Solve $\frac{d^{2} y}{d x^{2}}-4 y=\cosh (2 x-1)+3^{x}$ by inverse differential operator method.
(06 Marks)
b. Solve $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+3 y=e^{x} \cos x \quad$ by inverse differential operator method.
(05 Marks)
c. Solve $\left(D^{2}+1\right) y=\operatorname{cosec} x$ by the method of variation of parameters.
(05 Marks)

OR

2 a. Solve $\left(D^{3}-5 D^{2}+8 D-4\right) y=\left(e^{x}+1\right)^{2}$ by inverse differential operator method. (06 Marks)
b. Solve $\frac{d^{2} y}{d x^{2}}-y=\left(1+x^{2}\right) e^{x}$ by inverse differential operator method.
(05 Marks)
c. Solve $\left(D^{2}-3 D+2\right) y=x^{2}+e^{3 x}$ by the method of undetermined coefficients.
(05 Marks)

Module-2

3 a. Solve $x^{2} y^{\prime \prime}+x y^{\prime}+y=\sin ^{2}(\log x)$
(06 Marks)
b. Solve $p^{2}+p(x+y)+x y=0$
(05 Marks)
c. Solve $p=\sin (y-x p)$. Also find its singular solution.
(05 Marks)

OR

4 a. Solve $(1+2 x)^{2} y^{\prime \prime}-6(1+2 x) y^{\prime}+16 y=8(1+2 x)^{2}$
(06 Marks)
b. Solve $x p^{2}-2 y p+x=0$
(05 Marks)
c. Solve $y=2 p x+y^{2} p^{3}$
(05 Marks)

Module-3

5 a. Form the partial differential equation from $z=f(x+a y)+g(x-a y)$ by eliminating arbitrary functions f and g .
(06 Marks)
b. Solve $\frac{\partial^{2} z}{\partial x \partial y}=\sin x \cos y$, given $\frac{\partial z}{\partial y}=-2 \cos y$ when $x=0$ and when y is odd multiple of $\pi \quad z=0$.
(05 Marks)
c. Derive one dimensional wave equation $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$.
(05 Marks)

OR

6 a. Obtain the partial differential equation by eliminating a, b, c from $z=a x^{2}+b x y+c y^{2}$.
(06 Marks)
b. Solve $\frac{\partial^{2} \mathrm{z}}{\partial \mathrm{y}^{2}}=\mathrm{z}$, given that $\mathrm{z}=\mathrm{e}^{\mathrm{x}}$ and $\frac{\partial \mathrm{z}}{\partial \mathrm{y}}=\mathrm{e}^{-\mathrm{x}}$ when $\mathrm{y}=0$.
(05 Marks)
c. Obtain the various possible solutions of one dimensional heat equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ by the method of variables separable.
(05 Marks)

Module-4

7 a. Evaluate $\int_{1}^{3} \int_{1 / x}^{1} \int_{0}^{\sqrt{x y}} x y z d z d y d x$
(06 Marks)
b. Change the order of integration in $\int_{0}^{a} \int_{y}^{a} \frac{x d x d y}{x^{2}+y^{2}}$ and hence evaluate.
(05 Marks)
c. Prove that $\int_{0}^{\pi / 2} \sqrt{\sin \theta} d \theta \times \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{\sin \theta}}=\pi$
(05 Marks)

OR

8 a. Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} y^{2} \sqrt{x^{2}+y^{2}} d y d x$ by changing into polar coordinates.
(06 Marks)
b. Find by double integration the area bounded between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$.
(05 Marks)
c. Prove that $\beta(\mathrm{m}, \mathrm{n})=\frac{\Gamma(\mathrm{m}) \Gamma(\mathrm{n})}{\Gamma(\mathrm{m}+\mathrm{n})}$
(05 Marks)

Module-5

9
a. Find (i) $L\left\{t e^{-2 t} \sin ^{2} t\right\}$ (ii) $L\left\{\frac{e^{-a t}-e^{-b t}}{t}\right\}$
(06 Marks)
b. Given $\mathrm{f}(\mathrm{t})=\mathrm{t}^{2}, 0<\mathrm{t}<2 \mathrm{a}$ and $\mathrm{f}(\mathrm{t}+2 \mathrm{a})=\mathrm{f}(\mathrm{t})$, find $\mathrm{L}\{\mathrm{f}(\mathrm{t})\}$.
(05 Marks)
c. Using Laplace transforms solve the differential equation

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+y=e^{2 t} \quad \text { with } y(0)=0 \text { and } y^{\prime}(0)=1 \tag{05Marks}
\end{equation*}
$$

OR

10 a. Find $L^{-1}\left\{\frac{2 s-1}{s^{2}+2 s+17}\right\}$
(06 Marks)
b. Using convolution theorem find $L^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right\}$
(05 Marks)
c. Express $f(t)=\left\{\begin{array}{llc}\cos t & : & 0<t \leq \pi \\ \cos 2 t & : & \pi<t \leq 2 \pi \\ \cos 3 t & : & t>2 \pi\end{array}\right.$
interms of unit step function and hence find its Laplace transforms.
(05 Marks)

USN

First/Second Semester B.E Degree Examination, Dec.2018/Jan. 2019

Constitution of India, Professional Ethics \& Human Rights

(COMMON TO ALL BRANCHES)
Time: 2 hrs.]
[Max. Marks: 40

INSTRUCTIONS TO THE CANDIDATES

1. Answer all the forty questions, each question carries one mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, using whiteners on the OMR sheets are strictly prohibited.
6. The Indian constitution has the distinction of -.--
a) the world's largest written constitution
b) the world's smallest written constitution
c) the best constitution in the world
d) one of the oldest constitution in the world
7. Which among the following was not a port of the original preamble of the constitution of India?
a) sovereign
b) Democratic
c) secular
d) republic
8. How many categories of fundamental rights are guaranteed in part III of the constitution?
a) 7
b) 5
c) 4
d) 6
9. The Bijoe Emmanuel V/s State of Kerala (the National Anthem Case) was a case, where the supreme cart of India interpreted the fundamental right, freedom to / of $-\ldots$. .
a) assemble peacefully and without arms
b) speech and expression
c) move freely through the territory of India
d) associations or unions
10. Which among the following was the fundamental right added to the constitution by an amendment in 2002?
a) right to freedom
b) right to education
c) freedom to assemble peacefully and without arms
d) freedom to practice any profession
11. The constitutional goal of formulating the directive principles of state policy was to make India into a --- -
a) welfare state
b) police state
c) military state
d) constitutional monarchy
12. In which case did the supreme court of India hold that children below the age of 14 years cannot be employed in any hazardous industry, mines or other work?
a) Sarla Mudgal v/s union of India
b) M.C. Mehta v / s state of Tamil Nadu
c) T.M.A Pai v/s state of Karnataka
d) S.R. Bommai v/s union of India
13. Article $51(\mathrm{~A})$ of the constitution specifies a code of - - fundamental duties for citizens.
a) 10
b) 12
c) 11
d) 9
14. Article 41 , which directs the state to provide opportunities to enjoy maternity care and relief comes under the --- of DPSP
a) social and economic charter
b) social security charter
c) community welfare charter
d) potential freedoms charter
15. The DPSP, as per Article 37 of the constitution are
a) justiciable
b) non-justiciable
c) partially justiciable
d) none of these
16. The constitutional head of the Indian state is
a) the prime minister
b) the president
c) the council of ministers
d) the chief justice of India
17. The president of India can exercise
i) Executive and military powers
ii) Diplomatic and legislative powers
iii) Ordinance making powers
iv) Judicial and emergency powers
a) $\mathrm{i} \& \mathrm{ii}$
b) iii \& iv
c) i \& iii
d) i, ii, iii, \& iv
18. The prime minister of India must be - - - -
a) a member of the Lok Sabha
b) a member of the Rajya Sabha
c) a member of either of the two houses
d) None of these
19. The Rajya Sabha is also known as ----
a) the council of ministers
b) the council of people
c) the council of states
d) the lower house
20. The power to interpret and safeguarded the constitution is vested with - - - -
a) the parliament
b) the president
c) the chief justice of India
d) the supreme court of India
21. Which among the following is NOT a qualification to become the Governor of a state?
a) She/He must be a citizen of India
b) She/ He must have attained the age of 35 years
c) She/He shell be a number of either union or state legislature
d) She/He shall not held any office of profit at the time a appointment
22. It is the prerogative of ----- to choose the council of ministers of state legislature
a) the chief minister
b) the governor
c) the speaker
d) the leadr of the opposition
23. How many India states have a bi-cameral legislature at present?
a) 5
b) 6
c) 7
d) 8
24. Disputes related to elections are primarily settled by the - - - -
a) subordinate courts
b) high courts
c) supreme court
d) election commission
25. Abolition of untouchability is mentioned in Article ----- of the Indian constitution
a) 17
b) 19
c) 18
d) 275
26. National commission for scheduled castes and scheduled Tribes shall have the powers of a
a) criminal court
b) tribunal
c) civil court
d) high court
27. The intervening period between two sessions of a state legislature shall not be more than
a) 3 months
b) 4 months
c) 1 month
d) 6 months
28. Which among the following is not an institution meant to safeguard the laws aimed at empowering women?
a) National Human Rights Commission
b) National Commission For Women And Children
c) The Parliament
d) Family Courts
29. What is prohibited by Article 24 of the constitution?
a) child labour
b) traffic in humans
c) child marriage
d) punishing children who committed heinous crime
30. The present chairman of National Human Rights Commission is --- -
a) K.G. Balakrishnan
b) H.L. Dattu
c) Venkata Chelliah
d) Santhosh Hegde
31. The chief election commissioner can be removed from his/her office by --- -
a) an order of the president
b) an executive order by the parliament
c) impeachment by the parliament
d) the supreme court
32. - - - - is not a function of the election commission
a) selecting candidates for political parties
b) preparing electoral rolls
c) conducting elections
d) counting of votes and declaration of results
33. Fundamental rights and DPSP can be amended by --- -
a) simple majority in the parliament
b) two-third majority in the parliament
c) two-third majority in the parliament with ratification by half of the state legislatures
d) none of these
34. Fundamental duties were added to the constitution by the $-\ldots$ -
a) $44^{\text {th }}$ Amendment Act of 1978
b) 73 rd Amendment Act of 1993
c) $77^{\text {th }}$ Amendment Act of 1995
d) 42 nd Amendment Act of 1976
35. Indian constitution is ----
a) rigid
b) flexible
c) partly rigid and partly flexible
d) partly written and partly unwritten
36. One of the aims of studying engineering Ethics is to
a) inspire engineers acquire in depth knowledge in the engineering field
b) stimulate moral imagination
c) acquire new skills in engineering testing
d) encourage research in engineering
37. The basis of or reference point for professional ethics is
a) common morality
b) personal morality
c) business ethics
d) social morality
38. The skill and habit of thinking independently and rationally about ethical issues on the basis of moral concern is referred to as
a) moral integrity
b) moral consistency
c) ethical awareness
d) moral autonomy
39. Which among the following is NOT an impediment to professional responsibility?
a) courage
b) fear
c) self-deception
d) microscopic vision
40. Causing harm without aiming to cause harm but acting in conscious awareness that harm is likely to result is referred to as -- -- causing harm
a) intentionally
b) reckessly
c) negligently
d) inadvertently
41. The use of intellectual property of others without their permission or credit is - - - -
a) trimming
b) cooking
c) plagiarism
d) forging
42. Which among the following is not an attitude towards responsibility in engineering?
a) reasonable care
b) good works
c) minimalist
d) idealistic
43. The question "What is 'safety' and how is it related to 'risk'?" is an example of
inquiry
a) conceptual
b) factual
c) normative
d) descriptive
44. When one is in a professional relationship - is supposed to take precedence over personal morality
a) social morality
b) common morality
c) professional ethics
d) religious morality
45. Which among the following are part of the umbrella virtue called professional responsibility?
a) self-direction virtues
b) public spirited virtues
c) teamwork virtues
d) all of these

1	K	T		6	M	E	H	O	H

First/Second Semester B.E Degree Examination, Dec.2018/Jan. 2019

Environmental Studies

(COMMON TO ALL BRANCHES)

Time: 2 hrs.]
[Max. Marks: 40
INSTRUCTIONS TO THE CANDIDATES

1. Answer all the fourty questions, each question carries ONE mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, using whiteners on the OMR sheets are strictly prohibited.
6. The word ecology is proposed by
a) Ernst Heckel
b) Helena curtis
c) Charles Southwick
d) Charles Alton
7. A food web consists of
a) a portion of food chain
b) An organism position in food chain
c) Interlocking of food chain
d) A set of similar consumers
8. Population explosion will cause
a) Bio diversity
b) Stress on ecosystem
c) More Employment
d) None of these
9. Which of the following statement is not true about animal husbandary?
a) it is a part of agricultural activity
b) It is breeding, feeding and management of animals
c) It is live stock production
d) It is protective of wild life.
10. Fossils fuels largely consists of
a) Hydrocarbons
b) Hydrogen sulphide
c) Hydrochloric acid
d) Carbon dioxide.
11. The major contributors to the acid rain are known as
a) Precursors
b) Processors
c) Protons
d) Pollutants
12. Percentage methane content of biogas is
a) 5.5
b) 85
c) 55
d) 0.55
13. Water used for irrigation of food crops fodder crops and medical herbs is known as
a) Consumptive use
b) Commercial use
c) Productive use
d) Auxiliary use
14. Environment (protection) Act was enacted in the year
a) 1986
b) 1992
c) 1984
d) 1974
15. Pesticide causes
a) eye irritation
b) skin irritation
c) Respiratory ailments
d) all of the above
16. Which of the following is not a renewable source of energy
a) Fossil fuel
b) Solar energy
c) Tidal wave energy
d) Wind energy
17. Percentage of fresh water available below the earth is
a) 2.8%
b) 2.2%
c) 0.6%
d) 2.15%
18. The quantity of solar energy received by the earth is
a) 5%
b) 15%
c) 99%
d) 45%
19. Smog is combination of,
a) Smoking and Fog
b) Snow and Fog
c) Smoke and Snow
d) All the above
20. Agricultural revolution began
a) 1000-2000 years ago
b) 1 million years ago
c) 30,000-50,000 years ago
d) 10,000 $-20,000$ years ago
21. Environmental pollution is due to
a) Rapid urbanization
b) Deforestation
c) Afforestation
d) a and b, as above
22. What is maximum allowable concentration of fluorides in drinking water?
a) $1.0 \mathrm{mg} /$ litre
b) $1.25 \mathrm{mg} /$ litre
c) $1.50 \mathrm{mg} /$ litre
d) $1.75 \mathrm{mg} /$ litre
23. Which pyramid is always upright?
a) Energy
b) Biomass
c) Numbers
d) Food chain
24. The leader of chipko movement is
a) Sunderlal Bahuguna
b) Medha Patkar
c) Vandana Shiva
d) Suresh Heblikar
25. Bhopal Gas Tragedy was caused due to leakage of
a) Methyl iso cyanate (MIC)
b) Sulphur dioxide
c) Mustard gas
d) Methane
26. Each chlorine free radical can destroy the following number of ozone molecules
a) 1000
b) 10,000
c) $1,00,000$
d) 100
27. In aquatic ecosystem phytoplankton can be considered as a
a) Consumer
b) Producer
c) Saprotrophic organisms
d) Macro consumer
28. The first international earth summit was held in
a) Johannesberg
b) Kyoto
c) Stockholm
d) Riodejanerio
29. Ozone layer thickness is measured in
a) PPM
b) PPb
c) Decibels
d) Dobson unit
30. The water (Prevention and control of pollution) Act was enacted in the year
a) 1986
b) 1974
c) 1994
d) 2004
31. Karnataka State Pollution Control Board (KSPCB) was established in the year.
a) 1947
b) 1982
c) 1986
d) 1976
32. Which state is having highest woman literacy rate in India?
a) Karnataka
b) Punjab
c) Rajasthan
d) Kerala
33. Noise is measured in
a) Decibles
b) Jouls
c) PPM
d) NTU
34. Excess nitrates in drinking water is likely to cause
a) Fluorosis
b) Minamata
c) Blue baby syndrome
d) None of these
35. The word 'Environment is derived from,
a) Greek
b) French
c) Spanish
d) English
36. Forests prevent soil erosion by binding soil particles in their
a) Stems
b) Roots
c) Leaves
d) Buds
37. Study trends in human population growth and prediction of future growth is called
a) Demography
b) Biography
c) Kalography
d) Psychology
38. Large regional unit characterized by Flora and Fauna is
a) Biosphere
b) Biome
c) Ecosystem
d) All of these
39. Environment means
a) Sum total of all condition
b) A beautiful land scape
c) Industrial Production
d) Air and water
40. Remote sensing is a
a) Satellite system
b) Ground segments
c) Sensor system
d) All of these
41. Terrace forming is practiced in
a) Coastal areas
b) Hills
c) Deserts
d) Plains
42. Who is the author of the book "Silent Spring"?
a) Robin cook
b) Arthur Hailey
c) Rachel carson
d) Darwin
43. Geothermal energy is a
a) Heat energy
b) Current energy
c) Wind energy
d) Solar energy
44. Which of the following is not a "green house gas"?
a) Oxygen
b) Carbon dioxide
c) Chlorofluro carbon
d) Methane.
45. GIS can be expanded as
a) Geological information system
b) Geographic information system
c) Geodynamic intimation system
d) Geographic internet system
